THERMAL BEHAVIOUR OF NEW HYDRAZINIUM(1+) HEXAFLUOROZIRCONATE AND -HAFNATE

D. GANTAR, A. RAHTEN

'Jozef Stefan' Institute, 'Edvard Kardelj' University of Ljubljana, 61000 Ljubljana, (Yugoslavia)

and B. VOLAVSEK

Faculty of Technical Sciences, University of Maribor, 62000 Maribor (Yugoslavia)

SUMMARY

Two new hydrazinium(1+) fluorocomplexes, $(N_2H_5)_2ZrF_6$ and $(N_2H_5)_2HfF_6$ were prepared and characterized by chemical analysis, vibrational spectroscopy and X-ray powder photography. They are isostructural and the diffraction data were indexed on the basis of a monoclinic cell. Study of their thermal behaviour by TG, DTG, DTA and DSC measurements showed that they decomposed in stages. $(N_2H_5)_2ZrF_6$ decomposed in three steps through $(NH_4)_2ZrF_6$ and NH_4ZrF_5 . The thermal decomposition of $(N_2H_5)_2HfF_6$ was more complex: in the first step $(NH_4)_2HfF_6$ with some $N_2H_5HfF_5$ was obtained, and in the second NH_4HfF_5 . The intermediates were identified by chemical analysis and vibrational spectroscopy.

INTRODUCTION

In the sixties the hydrazinium(2+) fluorometalates N₂H₆MF₆ and $(N_2H_6)_3M_2F_{14}$ (M = Zr, Hf) were isolated from aqueous solutions [1,2]. However, the corresponding hydrazinium(1+) compounds have not been prepared so far. Various methods can be used for the preparation of hydrazinium(1+) fluorometalates, among which the reaction of the corresponding hydrazinium(2+) salts with hydrazine is very common. In the present study we synthesized $(N_2H_5)_2ZrF_6$ and $(N_2H_5)_2HF_6$ and investigated their properties, particularly their thermal behaviour.

0022-1139/88/\$3.50

© Elsevier Sequoia/Printed in The Netherlands

EXPERIMENTAL

The hydrazinium(1+) fluorometalates, $(N_2H_5)_2MF_6$ (M = Zr, Hf), were prepared by the reactions of the hydrazinium(2+) hexafluorozirconate and -hafnate with hydrazine hydrate:

 $N_2H_6MF_6 + N_2H_4.H_2O - (N_2H_5)_2MF_6 + H_2O$ M = Zr, Hf

The chemical analysis of the products is summarized below:

$$(N_2H_5)_2 ZrF_6: Found: N_2H_4, 23.3; Zr, 33.6; F, 41.5. \\ Calcd.: N_2H_4, 23.62; Zr, 33.62; F, 42.01. \\ (N_2H_5)_2 HfF_6: Found: N_2H_4, 17.9; Hf, 49.5; F, 31.2. \\ Calcd.: N_2H_4, 17.87; Hf, 49.78; F, 31.79. \\$$

For thermal analysis a Mettler TA 1 thermoanalyzer was used. In a typical run a 100 mg sample was used; in a macrothermogravimetric decomposition this was increased to 500 mg; both were referenced against a 100 mg sample of α - Al₂O₃. Platinum crucibles (1 ml) were used, the heating rate of the furnace was $1^{\circ}C$ min⁻¹, and the decompositions were carried out in a dry argon atmosphere with a flow rate of 5 lh⁻¹. The DTG range was 10 mg min⁻¹ and the DTA range was 200 μ V.

Heat flow as a function of temperature was determined with a differential scanning calorimeter (Mettler, DSC-20). DSC recordings were made in a closed aluminium cell with a pin hole on its surface and in a flowing argon atmosphere. From 8-9 mg of sample was employed at a heating rate of 10° C min⁻¹. Δ H was determined by graphical integration using a Mettler TC 10A processor.

Infrared spectra of the solids pressed between CsBr discs were obtained using a Perkin-Elmer 521 spectrometer. The Raman spectra of the samples in a Pyrex tube were recorded on a Spex 1401 double monochromator instrument with exciting radiation from the 5145 $\stackrel{\circ}{A}$ line of a Coherent Radiation Laboratories (model Ar) ion laser.

X-ray powder diffraction data were obtained with a Debye-Scherrer type camera and CuK $_{d}$ radiation. The diffraction photographs were indexed using a Haendler program [3] on an IBM-1130 computer.

Hydrazine was determined potentiometrically [4], total fluorine by a modified distillation method [5], ammonium by a Kjeldahl method [6] and metals gravimetrically [7].

RESULTS AND DISCUSSION

The decomposition of $(N_2H_5)_2ZrF_6$ starts at $100^{\circ}C$ (Fig. 1). The endothermic DTA peaks at 98° , 110° , 130° and $136^{\circ}C$, which are not accompanied by weight loss, can be accounted for by phase changes in the sample. Between 146°

Fig. 1. TG, DTG and DTA curves of (N2H5)2IF6.

and 220^oC decomposition is strongly exothermic with DTA peaks at 194^o, 199^o, 210^o and 294^oC and a DTG minimum at 214^oC. Up to 220^oC the sample loses 13.6% of its weight, corresponding to the loss of a mole of hydrogen and a mole of nitrogen per mole of starting material (theoretical weight loss is 11.07%). The intermediate is $(NH_4)_2 ZrF_6$ (found: NH_4 , 14.4; calcd. for $(NH_4)_2 ZrF_6$; NH_4 , 14.95). In the temperature interval between 220^o and 271^oC a further 11.1% weight loss

occurs (theoretical weight loss for the formation of NH_4ZrF_5 is 13.65%) and this is accompanied by an endothermic DTA peak and a DTG minimum at $262^{\circ}C$. The intermediate NH_4ZrF_5 is isolated at $271^{\circ}C$ (found: NH_4 , 8.1; calcd. for NH_4ZrF_5 : NH_4 , 8.23). In the last step the decomposition is endothermic with a DTA peak and a DTG minimum at $340^{\circ}C$. Up to $415^{\circ}C$ the cumulative weight loss is 37.7%, which correlates well with the theoretical value (38.37%) for the formation of ZrF_4 .

The decomposition may be described in terms of the equations:

$$(N_{2}H_{5})_{2}ZrF_{6} \longrightarrow (NH_{4})_{2}ZrF_{6} + H_{2} + N_{2}$$
(1)
$$(NH_{4})_{2}ZrF_{6} \longrightarrow NH_{4}ZrF_{5} + 1.5H_{2} + 0.5N_{2} + HF$$
(2)
$$NH_{4}ZrF_{5} \longrightarrow ZrF_{4} + 1.5H_{2} + 0.5N_{2} + HF$$
(3)

The thermal decomposition of $(N_2H_5)_2HfF_6$ begins at $105^{\circ}C$ (Fig. 2). Up to this temperature DTA peaks at 70° , 82° and $95^{\circ}C$ are observed, as in the case of $(N_2H_5)_2ZrF_6$. In the first step up to $219^{\circ}C$ the sample loses 8.4% of its weight

Fig. 2. TG, DTG and DTA curves of (N2H5)2HfF6

corresponding to the formation of $(NH_4)_2HfF_6$ (theoretical value is 8.37%). However, some $N_2H_5HfF_5$ is also present as is proved by chemical analysis (found: N_2H_4 , 4.5) and the vibrational spectrum of the first step intermediate. This step is accompanied by an endothermic DTA peak at $153^{\circ}C$ and an exothermic DTA peak at 200° , and a DTG minimum at $200^{\circ}C$. In the second step between 219° and $271^{\circ}C$ the decomposition is exothermic with a DTA peak and a DTG minimum at $270^{\circ}C$. Between 105° and $271^{\circ}C$ the sample loses 19.1% of its weight and this corresponds to the formation of NH_4HfF_5 (theoretical weight loss is 18.70%; found: NH_4 , 6.3; calcd. for NH_4HfF_5 : NH_4 , 6.18). Further decomposition is endothermic with a DTA peak and a DTG minimum at $332^{\circ}C$. The cumulative weight loss of the sample up to $357^{\circ}C$ amounts to 29.0%, corresponding to the formation of HfF_4 (theoretical weight loss is 29.03%).

The first step of the thermal decomposition of $(N_2H_5)_2HfF_6$ is more complex in comparison to that of $(N_2H_5)_2ZrF_6$. Similar behaviour was also observed in the second step of the thermal decomposition of $N_2H_6MF_6$ (M = Zr, Hf) [8]. The decomposition is accompanied by exothermic and endothermic effects, and the intermediate, besides $(NH_4)_2HfF_6$, still contains $N_2H_5HfF_5$. In the next two steps NH_4HfF_5 and HfF_4 , as with the zirconium compound, are formed.

In the DSC curves for $(N_2H_5)_2ZrF_6$ and $(N_2H_5)_2HfF_6$ similar endothermal and exothermal effects take place in the range 40-500°C. The total area integrated between the DSC curves and the baseline from 40-500°C showed that the decompositions to metal tetrafluoride in total were endothermal, but ΔH for the decomposition of $(N_2H_5)_2ZrF_6$ was higher than for $(N_2H_5)_2HfF_6$. The effects clearly show that the both decompositions occur at the same way; however, pure $(NH_6)_2HfF_6$ could not be isolated under the conditions used on a thermoanalyser.

The vibrational spectra of starting materials and of the intermediate compounds isolated in the thermal decomposition were recorded. They are given in Tables 1 and 2.

The bands observed in the Raman and the absorptions in the infrared spectra between 940 and 1700 cm⁻¹ are assigned to the N₂H₅⁺ ion, and between 3100 and 3330 cm⁻¹ to NH₄⁺. For the anionic part of the vibrational spectra the bands in the 380-570 cm⁻¹ interval are assigned to metal-fluorine stretching and in the 200-355 cm⁻¹ interval to bending vibrations (metals Zr, Hf). The observed vibrational spectra are in accordance with the literature [9,10,11].

TABLE 1

Vibrational spectra (cm⁻¹) of $(N_2H_5)_2ZrF_6$, $(NH_4)_2ZrF_6$ and NH_4ZrF_5

(N ₂ H	(N ₂ H ₅) ₂ ZrF ₆		ZrF ₆	NH ₄ ZrF ₅		Assignment	
IR	R	IR	R	IR	R		
	131(6.5) 169(6)		170(6)		172(13)	└── lattice vibrations	
	244(9) 288(3)		350(17)	288s	242(10) 294(10) 352(6.5)	– (Zr-F) _b	
392m	394(7.5)	383m	383(6)	375m	388(11)		
420s,sn 480vs 530s,sh	472(5) 566(58.5)	477vs	472(11) 532(100)	478vs	473(22) 520(100)	(2r-F) _s	
947.0	690(3)	9/ 314/	703(7)				
9470s 961vs 972vs,sh	977(100)	949W	968(6)			– (N-N) _s	
1085vs	1122(6)	1082w	1080(4)				
1144s,sh	1142(10)	1145w				(NH ₃ ⁺) _r	
1227W 1250w	1263(2)						
1489vs	1432(2.5)					⊢ (NH ₂) _r	
1 508s 1 545s 1 600vs 1 634vs	1516(4) 1556(2) 1605(3) 1632(8.5)					- (NH3 ⁺)d	
	1651(11)					(NH ₂) _d	
		3130s	3174(10)	3075s,sh	3126(6 5)		
		3205s,br	JI44(IU)	3191s,br	JIZO(0,J)	3 ⁽¹ 1-4)	

340

(N2H5)2HfF6		$(NH_4)_2HfF_6, N_2H_5HfF_5$		NH ₄ HfF ₅		Assignment	
IR	R	IR	R	IR	R		
	132(9) 173(4)		188(18)		182(16)	Llattice vibrations	
	248(9) 286(2) 311(2)	277m	242(36)	279s	242(52) 299(26)	 - (Hf-F) _b	
	511(2)		354(16)		352(23)		
392m 434a ab	400(3)	378m	402(19)	378m		1	
4265,5N 468vs	480(2)	468vs	483(19) 539(66)	480vs	483(28) 523(100)	- (Hf-F) _s	
	568(55) 685(2.5)		570(85) 688(19)		700(17)		
960vs 970vs,sh	978(100)	972m	975(100) 1020(12)			- (N-N) _s	
1108vs 1122vs	1122(6) 1145(10.5)	1080m 1110w	1048(25) 1122(27)				
1142vs,sh 1250m	1270(2)					(141'3 'r	
	1431(2.5)		1338(25) 1414(22)			⊢ (NH ₂) _r	
1 505s	1515(4.5)	1506w 1528m					
1545s 1592s 1632vs	1554(2) 1602(3) 1630(6.5)	1588m 1608w 1638w	1594(15)			(NH3 ⁺)	
	1652(12.5)		1648(28)			(NH ₂) _d	
		3238m,br	3149(34)	3192m,b	r 3141(47)	V ₃ (NH	

Vibrational spectra (cm $^{-1})$ of $({\rm N_2H_5})_2{\rm HfF_6},$ the first step intermediates and ${\rm NH_4HfF_5}$

The X-ray powder photographs of $(N_2H_5)_2ZrF_6$ and $(N_2H_5)_2HfF_6$ show that the compounds are isomorphous and crystallize in a monoclinic system. The unit-cell parameters are closely related to those of monoclinic $(N_2H_5)_2TiF_6$ (a = 7.86, b = 9.97, c = 9.20 Å, $\beta = 98^{\circ}$) [12]. The results of indexed diffraction photographs are summarized in Tables 3 and 4.

TABLE 3

X-ray powder diffraction data for (N2H5)2rF6

h k l	^d calcd.	^d obs.	Ι	h k l	^d calcd.	^d obs.	I
100	8.08	8.12	w	1 3-3	2.270	2.262	m
011	6.90	7.09	VS	302	2,220	2.221	w
1 1-1	5.51	5.61	VS	-303	2,195	2.195	w
1 1 1	5.02	4.99	m	114	2.147	2.152	w
002	4.74	4.77	m	223	2,126	2.126	w
021	4.45	4.56	m	330	2.101	2.101	w
-102	4.34	4.40	m	241	2.055	2.054	m
120	4.27	4.24	m	331	2.009	2.005	w
200	4.04	4.02	m	4 1-1	1.989	1.981	w
121	3.80	3.80	m	150	1.956	1.955	vw
2 1-1	3.64	3.66	m	151	1.904	1.901	w
201	3.55	3.58	w	143	1.879	1.875	w
022	3.45	3.47	m	224	1.808	1.804	m
220	3.15	3.16	S	4 3-1	1.737	1.739	m
1 3-1	2.992	2.990	m	1 5-3	1.687	1.684	w
1 1-3	2.946	2.931	m	035	1.651	1.647	vw
103	2.820	2.831	vw	205	1.636	1.634	w
113	2.716	2.716	w	4 4-1	1.580	1.580	w
023	2.677	2.685	w	4 4-2	1.543	1.543	vw
132	2.538	2.536	w	3 4-4	1.520	1.520	vw
123	2.461	2.462	w	352	1.492	1.496	vw
3 2-1	2.368	2.370	w	145	1.462	1.461	vw
141	2.310	2,316	m				

Indexed on a basis of monoclinic cell with a = 8.15(1) Å, b = 10.08(1) Å, c = 9.56(1) Å, $\beta = 97.5(1)^{\circ}$, V = 778(4) Å³.

hkl	d _{calcd.}	d _{obs.}	I	hkl	d _{calcd.}	d _{obs.}	1
100	8.09	8.10	w	004	2.382	2.395	vw
011	6.92	7.06	VS	203	2.350	2.353	vw
1 1-1	5.53	5.62	VS	141	2.310	2.310	w
$1 \ 1 \ 1$	5.02	4.99	m	321	2.246	2.255	m
002	4.76	4.76	m	2 1-4	2,135	2.145	w
021	4.45	4.55	m	3 3-1	2.100	2.095	w
-102	4.37	4.38	m	241	2.056	2.048	w
120	4.28	4.24	m	4 1-1	1,995	1.997	w
200	4.05	4.01	m	051	1.972	1.977	w
121	3.80	3.79	m	313	1.898	1.898	vw
2 1-1	3.65	3.64	m	015	1.873	1.869	vw
201	3.56	3.57	w	421	1.799	1.798	m
022	3.46	3.46	m	044	1.731	1.732	w
220	3.15	3.16	S	4 3-2	1.692	1.692	w
1 3-1	2,995	2.988	m	422	1.677	1.678	w
1 1-3	2.946	2.922	m	3 1-5	1.643	1.643	vw
103	2.830	2.835	m	1 6-1	1.628	1.628	vw
113	2.725	2.712	w	403	1.611	1.612	vw
023	2.687	2.677	w	440	1.577	1.576	w
123	2.468	2.469	m	520	1.541	1.541	vw

X-ray powder diffraction data for $(N_2H_5)_2HfF_6$

Indexed on the basis of a monoclinic cell with a = 8.17(1) Å, b = 10.08(2) Å, c = 9.62(1) Å, β = 97.8(1)^o, V = 784(4) Å³.

ACKNOWLEDGEMENT

We thank Miss B. Sedej for chemical analysis. The work was financed through the Research Community of Slovenia.

REFERENCES

- J. Slivnik, A. Šmalc, B. Sedej and M. Vilhar, Bull. Slov. Chem. Soc., <u>11</u> (1964) 53.
- 2 J. Slivnik, B. Jerković and B. Sedej, Monatsh. Chem., 97 (1966) 820.
- 3 H.M. Haendler and W.A. Coonay, Acta Crystallogr., 16 (1963) 1243.
- 4 W.M. McBride, R.A. Henry and S. Skolnik, Anal. Chem., 23 (1951) 890.

- 5 G. Pietzka and P. Ehrlich, Angew. Chem., 65 (1953) 131.
- 6 A.I. Vogel 'A Textbook of Quantitative Inorganic Analysis', Longmans, London, 1961.
- 7 I.M. Kolthoff, E.B. Sandell, 'A Textbook of Quantitative Inorganic Analysis', Mac Millan, London, 1950.
- 8 D. Gantar and A. Rahten, J. Fluorine Chem., 34 (1986) 63.
- 9 S. Milićev and J. Maček, Spectrochim. Acta, A41 (1985) 651.
- H. Siebert, Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie, Springer Verlag, Berlin, 1966.
- 11 P.W. Smith, R. Stoessiger and A.G. Turnbull, J. Chem. Soc., A (1968) 3013.
- 12 J. Slivnik and B. Volavšek, NIJS Report, R-548, 1968.